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COMMENT 

On path integrals and stationary probability distributions 
for stochastic systems 
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Department of Physics, California State University, Fresno, CA 93740, USA 

Received 30 October 1992 

Abstract. The calculation of the stationary probability distribution for a particle subject to 
random noise using path-integral methods has been recently &cussed in a paper by 
Rattray and McKane. We wish to point out that this calculation is incorrect, and that the 
proper analysis avoids some puzzling features of the results presented in the above paper. 

In section 2 of their paper, Rattray and McKane [l] consider the calculation of the 
stationary probability distribution for monostable potentials using steepest descents. 
We wish to re-examine their approach to this problem, as their results-formally 
similar to expressions given by other authors-do not yield the correct answer when 
applied to a simple problem. 

Following [l], we consider the problem defined by the Langevin equation 

i = - V'(x)  + &) (1) 

and we restrict ourselves to white noise for simplicity (coloured noise may be handled 
using the same methods to be discussed below): 

(E(t)E(t')) = 2D6(t- f'). (2) 

The probability of finding the particle at x at time t=  T, given that it started out at x, at 
time t=O may be expressed as a path integral: 

where the action is given by 

and the Jacobian 4x1 may take different forms depending on the convention adopted 
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to define the path integral. In order to make comparison with the developments in [I] 
easier-and to be able to use the rules of conventional calculus-we choose 

We now seek to evaluate the stationary probability distribution 

P(x)  = T-m lim P(x,  Tlx,, 0) (6) 

for. small D using the method of steepest descents. Setting the first variation of the 
action (4) equal to zero leads to 

ic= a V'(X,). (7) 

Since S [ x ] 3 0 ,  it is clear that the positive sign gives a maximum of the action: the 
dominant contribution to the integral in (3) must come from the negative sign, 
regardless of whether we are interested in the 'uphill path beginning at a local 
minimum' [l] or not. From the mathematical point of view, the fact that the positive 
sign in (7) is the wrong choice for the method of steepest descents will be reflected in 
the appearance of negative eigenvalues of the operator associated with the second 
functional derivative of the action (except for hear and quadratic potentials). From 
the physical point of view, it would be odd indeed if a vanishingly small noise were 
capable of effecting the discontinuous change from the negative sign in the determinis- 
tic version of equation (I), to a positive sign for infinitesimal D .  

Foric= -V'(x,) the action vanishes: it is therefore seemingly impossible to obtain 
the Boltzmann factor if we use the negative sign in (7). A careful handling of the 
boundary conditions shows, however, that this is only an apparent difficulty. Let us 
compute the path integral in (3) by expanding around the solution with the negative 
sign. Write 

44 =x&) +f(O +YO) (8) 

where ic= -V'(xc), y(t) satisfies the usual boundary conditions for Gaussian fluctua- 
tions, y(O)=y(T)=O, and f(i) is necessary to accommodate the fact that one may 
impose only one condition on x,, while the integration variable x(r) is subject to two 
conditions: x(0) = xo and x(T)  =x .  If we set xX0) =xm it is clear that we should require 
f(O)=Oandf(T)=x-x,(T);f(t) itself will be determined below. 

Replacing (8) in the action (4) gives, to order y(r)*: 

-;+ v) If + vf) *+- ( j  + VY)** :I; 
from where we see that a convenient choice for f(t) would satisfy 

(9) 

( -;+ v) cf + "y) = 0. 
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It is easy to verify that the solution to equation (lo), with the stated boundary 
condition on f(t), is 

Substituting in (9) we find, after an integration by parts in the last term 

‘SI + S,[J]. (12) 

Thus, in the small-D h i t  the method of steepest descents yields 
Y(n=o 

Y W = O  
P(x, TI%, O)=J[x.I exp(-S,lD) 1 DY exP(-s2[rl/D). (13) 

The remaining path integral may be calculated by standard methods [2-41, with the 
result 

Dy exp(-S2[y]lD) = (14) 
Y m = o  

Y(o)=o 

For the Jacobian we have 

4x,] = exp( 1: dtV”(xc)) = exp( - 1: dffJ i . )  = {ic(0)/ ic(  T)}1‘2. 

{ 1: 
(15) 

Thus 

P(x,  Tlxo,O)= 4nDi3T) g Z ( t )  dt exp(-SJD). (16) 

To see that (16) does indeed tend to the correct limit as T+ m , we now assume for 
simplicity that the potential has a minimum at &, for which V(2,) = 0. The ‘classical’ 
path x,(t) will then be driven to this minimum for long times, and therefore i..(t)-O as 
T+ m . This means that the integrals in (16) are dominated by times t=  T; since 

i, = -V’(x,) = -V”(&) (xc-2, )  = -k(x, -&) (17) 
forf-T, we have&(t)ae-n, k>O, for t - a .  Hence 

I:f;’(t) dt = {2ki$(T)}-‘ 

and (16) has the limit 

P ( ~ ) = ( k / 2 n D ) ‘ / ~  exp{-k(x-Zc)’/2D}. (19) 
To the order used in our approximations (see the comment after equation (21) in [l]), 
V(x) = $k(x - &)’, so 

P(x) = {V”(.fc)/hD}”* exp(-V(x)/D} (20) 
which is the expected Boltzmann form. 
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A simple test of our approach is provided by a quadratic potential. The path 
integral can be done in closed form, and the answer compared with well-known 
calculations using other methods [5].  For V(x)  = &x2, (16) is no longer an approxima- 
tion, but the exact result. Since x&) =xOe-', we find 

iz( T )  ' i i 2 ( t )  dt = 2 11 - exp(-ZkTj} 2k 0 

and the probability is 

This is the correct expression, but it cannot be obtained from the equations in [l]. 
As a final remark we should mention a very interesting paper by Weiss 161, who 

took advantage of the fact that one may explicitly 'factor out' the irreversibility in the 
path integral [7]. One is left with a modifiedfunctional integral which may be handled 
using the familiar instanton method of ordinary quantum mechanics. Even though his 
approach is different from ours, it may be verified that his equations reproduce results 
like (22) above. 
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